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FORWARD AND BACKWARD CONTINUALION FOR NEUTRAL
- FUNCTIONAL DIFFERENTIAL EQUATIONS

Jack X, Hale

A_neutral functiongl differential equation is a relationship
in which theidefivative of the state of a system at time t is
specified in terms of the state st time t as well as the state and
the derivative of the state for values of time preceding t. Many
authors have considered such equations as may be seen by consulting
(1], [2], [3]. Recently, Driver [4] considered a special class for
which the derivative occurs linearly and proved the initial value
problem is wecll-posed in the sense that a solution'exists and depends
continuously'upoﬁ‘the initial‘déta, To avoid discussing the differ-
entiability properties of the solution, Hale and Meyer [5] introduced
an integratedvform of the equation which if differentiated would con-
tain theAderivative of the state with coefficients depending only on
t. Hale and Cruz [6] gave a much more general version of [5] and
proved agein the problem was well-posed,

The present peper continues with the development in [67.
More specifically, we consider a class of equations which in somé
respects is ﬁore general than the ones considered in [6] and it has
the advantage that it leads in a very natural manner to a discussion
of thg problem of the backward existence of solutions., After develop-
ing the basie theory'of existence, uﬂi@uéﬁéss, continuous dependence

and continuatién.of gsolutions, it is shown that solutions of most linear



equations with bounded coefficients can not have a nonzerc sclution

vhich approaches zero faster than an exponential.

1, Definit‘ion. Supposé ‘r 20 is a, given real number, R = (-o,e),’ B
is a real or complex n-dimensional line:arwvector space with norm |+,
c([e,b], En) ! {s the Banach space of cgntinuous functions mapping the
interval [5,,;6] into E° with the topology of uniform convergence.

If [a,b] =)"[5r,'0], we let C = C([-r,0], En) and designate the riorm
of an element ¢ in C by |¢| = sup_rseéoh(e)l, Single bars are
generally us'ed-to denote norms in different spaces, but no confusion
should arise, If o € R, A2 0 and x € C([o-r, o+A], En), then for

any t e [0, o+A], we let x,_ € C be defined by xt(e) = x(t+6),

t
-r 5950, If Q is an open subset of R X C and f, D: Q- E are

given continuous functions, we say the relation
. d -
(1.1) 53 D(t:xt) = :(t:xt)

is a functional differential eq_ug:bion. A function x" is said to be a
solution of (1,1) if there sre 'che.R, A>0 suché.that-.

X e C([o-r, o+A), En),‘(t,xt) €q, t € [0, o+A) and x ‘sa.tisfies
(1.1) on (a, o+A). Notice this definition implies that D(t,x,) and
not x(t) 4is continuously differentisble on (o, o+A). For a given

deR, ¢ €C, (0,0) €, we say x(0,0) -1s a solution of (1.1) with

initial value (o,¢) or simply a solution of (1.1) through (o,¢)




if there is an ‘A > 0 such that x(v,¢) is a solution of (1,1) on
[o-r, o+A) and xa(c,¢) = o,
Equation (1,1) is very general and includes ordinary differ-

ential. equations (r = 0) as well as the following.

(1.2) . %.t(il = £(t,%)

(1.3) -}t- [x(t) - bx(t-r)] = f(t,xt), b # o0,
(1.1) %E x(-r) = £(t,%,)

(1.5) gt x(6g) = £(t,x.).

In the classical terminology, for r > 0, equation (1,2) is called a
retarded functional differential equafion, equation (1.5) an equation
of neutral type (because, if x is differentiable, the derivative
occurs at t and t - r), equation (1l.4t) an equation of advanced
type and equation (1.5) an equation of mixed type.

The initial value problem for equation (l,l) in general
will ﬁot have a solution since it includes (1.4) and (1.5). Additional
restrictions will be imposed on the function D so that the initial
velue problem is well defined., To formulate these restrictions, it
is convenient to have .-

]

1.1 Definition, Suppose {1 is an open set in R X C, DI Q —E' is



continuous, D(t,p) has a continuous Frechet derivative Dq') (t,9) with

respect to ¢ on § and
. o] . .
Dé-(t’:q))‘v = fr[de“(t:q)ae)]‘y(e)
for (t,p) €@, Vv e C, where u(t,0,8) ' is an n X n matrix with ele-

ments of bounded variation in 6 € [-r,0], For any B- in [-r,0] we

gey D is atomic at B on O if

(1.6) w(t,9,87) - u(t,9,8”) = A(t,9,8)

det A(t,9,B) ?‘ [
where A(t,p,B) is continucus in (t,p) and there is a scalar func-

tion v(t,p,s,B) continuous for (t,p) €@, s z 0, r(t,9,0,8) =0

such that

B+s
(1) 1L T8e(,0,0)0¥(0) - AtR,VP)] £ 7(5,,5,8)1¥]
-8

for (t,p) eq, s20, ¥V eC.

1.2 Definition. A neutrsl functionel differentisl equation’ (NFDE)
is a system (1,1) for which D,f: Q - E are continuous end D is

atomic at zero on Q.

3.t
A very special hut important case of a WFDE is one in which

Q= (1,0) x C, D(t,p) is linear in ¢



o
(1.8) D(t,0) = / [44u(t,0)10 (0)
-
B(t) = u(t,0) - U(tao‘)a det B(t) # O,

o : -
| 13 u(t,0)I0(8) - B(E)(0)] = v(t,s)|o]
-8 )

for (t,9) é!ﬂ; where B(t) is continudus and v(t,s) is continuous

for t e (t,®), s 20, v(t,0) = 0, In particular, all retarded func-

tional differential equations (RFDE)

(1.9) g%-.x(t) = £(t,x,)

are included in;fhe ciass of ﬁFDE.

In [6], a NFDE was defined in a manner similar to the above
for a class of operators D(t,p) = ¢(0) - g(t,p) even when g(t,p)
is not differeﬁtiable in @. The important difference here is not the
smoothness of é(t,@) but the fact that D(t,p) need not be of this

special fornm.,

2., Fundamental Properties of NFDE

In this section, we give results on the existence, unique-
ness, continuation and continuous dependence of solutions on initial

data,

¢ -

H]

Theorem 2,1 (Eiistence). If Q is en open set in R x C and (1.1)




is a NFDE, then for any (o,p) € @, there is a solution of (1.1l) pass-
ing through (o0,9).

Proof';

A function x 1is a solution.of (1.1) through (o,p) if and

only if there is an «a > 0 such that x .satisfies the equation

i F

(2.1) | .D.(t’xt)

i

D(O';CP) + [ f(s,xs)ds, t € [d,0+a],
o , e
xa = Q,
Let $2 [-r,oo) - E® be defined by a(t) = q)(t); t e [-r,0],
P(t) = ('5(0), t € [O,m), Then x is a solution of (2.1) on [o,0+q]

if and only _if( x(o+t) = @(t) + z(t), -r st = q, vhere z(t)

satisfies

% N |
(2.2) ,D»(a+t,q>t+zt) = D(a,9) + [ f(a+s,q>s+zs)ds, t e [0,0],
_ )
z = 0,
o
Since D(t,p) is continuously differentiable in ¢,
(2.3) D(t,9+¥) = D(5,9) + D (£,0)¥ + &(t,0,¥)
where

g(t,cp,O) 5 0° --

D 1elt,9,¥) - 8(5,0,8)] 5 €(t,0,8)|v-t]



for (t,p) €&, |¥],|¢] =8 and &(t,p,8) is continuous in t,p,d
for (f,q>) €, 820 and €(%,9,0) = 0. Therefore, using (2,2) and
(2.3), x is a solution of (2.1) if a.nc?“only if x . =0, +z and

z satisfies

(2.14) ] Dé(mt,ﬁ)'t)zt = D(0,9) - D(b+0,9,) - g(o+t,$t,zt)
t
+ [ £(ors,$ 42 )ds, t € [0,a],
)
z = 0,
o

Using the fact that D is atomic at O on Q, we have (as long as

(0+£,3,) € Q)

o
(2.5) 2(t) = A'l(c-l-t,$t,0)[f [a n(0+,9,,0) ]z, (6)
=T

+ D(o,0) - D(t+a,$t) - g(o+t,$t,zt)

t
+ [ f(a+s,q)s+zs)ds}, t e [0,a],
o .

z =Oo

If we let (Tz)(t) = 0, (S2)(t) = 0, t € [-r,0], and

-

o
(T2) (8) = A" (0+6,5,,0) (] [ n(o+t,5,,6)1z,(6)
=X
+ D(U:(p) - D(t+9,${.}-- g(0‘+‘t,$t, Zt)}
t
(82) (8) = A~ (o+t,3,,0) {’ £(o+s, 3tz )ds, b € [0,al,



then (2,5) is equivalent to the equation

z=Tz+ 88, zeC([-T,a], E), z,=0.

One now proceeds as in [6] to show there are positive a,B so that,
1f A(@,B) = (t: [-r,a] —aEn,.continﬁous, ¢, = 0, lgtl s B,

t € [0,d]}, then T (G,B) - C([-r,G], E") 1is a contraction,

s. o/(a,B) »c([-r,qa], En) is completely continuous and

T+ 8: &/(Q,B) » ¥(@,B). This implies the existence of a fixed
point of T+ 8 in /(G,F) and thus a solution of (1.1) through

(0,9).

Theorem 2,2 (Uniqueness), If Q is an open set in R x C and (1.1)

is a NFDE with f(t,p) locally lipschitzian in ¢ _in each compact set
of @, then for any (o,9) € @, there is a unique solution of (1.1)

through (o0,9).

Proof, The proof is essentially the same as the proof for ordinary

differential equations if one uses the fact that a solution of (1.1)

satisfies xa+t‘= 9, + 2z, and 2z satisfies (2.5).

-

Theorem 2,3. {Continuous Dggendence‘). Suppose (¢ is an open set in

R XC, Do @ SE is atomic at O on 9 _and A, (£,9,0) 1is the

corresponding matrix of Definition 1.1, k= 0,1,2,... . Suppose

D, Ak(t,q:,o) are uniformly continuous on closed bounded subsets of



) 3 1
9, D, as well as the derivative Dy o

2
to Do’ Dé 0 respectively as k — o uniformly on closed bounded sub-
s ;

with respect to. ¢ converge

sets of Q, ka' Q ._*En, k = 0,1,2?...,'gre continuous, fk(t,\y) - £_(s,0)
a8 k - oo, (’F,’.xv) - (s,p) for all (._s,qJ) € @ and for any (s,p) € Q,
there is a neighborhood V(s,p) of (é,(p) and a constant M such

that ti
| £ (t,¥0)] s M, (t,¥) e V(s,0), k=0,1,2,... .

Finally, let (ak,cpk) € @ be given, (ok,cpk) - (co,fcpo) as k - o and

suppose <& = xk(ck,cpk) is a solution of

d
EE Dk(t,x_t) = fk(t’xt’)

with initial value ¢° at o If x° 1is defined on [o,-r,b], b > o,

and is the only solution through (cfo,(po) , then there is an integer K

k

such that the x , K2 k‘o’ can be defined on [ok-r,b] and

xk(t} -9x°(t) as k - o uniformly on [‘ao-r,b]; that is, for any

, (o] k
0<€&<b-g +r, there is a k = kl(e) z O such that x, k 2 kl(ﬂ),
is defined on [o‘°-r+8,b] and xk('t) - x° (t) as k = o uniformly

on [oo-r+e,b].

Proof; The proof is technically complicated but proceeds in a manner

very similar to the one in [6] taking into account that a solution of
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(1.1) satisfies x where =z satisfies (2.5).

o+t = Pyt %

Definition 2,1, If D is atomic at B on Q and W is a subset of

Q, we say D is uniformly atomic at zero on W if thévevis an N >0
such that |A'l(t,cp,a)| £ N, ]D(;)(t,cp)l £ N for all (t,0) €W eand
r(t,9,8,8) 0 as s -0 uniformly far (t,9) € W.

If x is a solution of (1,1) on [o-r,a), a > 0, we say

X is a continuation of } if there is &a. b > a such that § is

defined on [o-r,b), coincides with x on [o-r,a) and satisfies

(1.1) on (o,b). A solution x is noncontinuasble if no such con-

tinuation exists; that 1is (o-r,a) is the maximal interval of
existence of the solution x. If the conditions of the basic exigtence
theorem are satisfied, then there ié’a solution of (1.1) on [o-r,a)
for some a > g, Zorn's lemma iﬁplies the existence of a nbncéntinuable
solution of (1.1). It is also true that thé meximal interval of ex-
istence is open,

The following theorem as well as the proof is based on the

thesis of W, Melvin [T].

Theorem 2,4 (Continuation)., Suppose Q 1is an open set in R X c,

(1.1) is a NFDE and for any closed bounded set W in Q with a
G-neighborhood'also in 9, f maps W into a bounded set in
E, D(t,w),-Q&(t,w) are uniformly continuous on W and D is uni-

.t

formly atomic et zeroon W, If x is a noncontinuable solution of
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(1.1) on [c-r;b), then there is a t' in [o,b) such that

(t',%,) ¢ W

Proof,; The case T = O is known from brdinary differential equations,-

Therefore, suppose r > 0. Also, we’may«assume b finite, If there

is a sequence t_—b  anda ¥ in € such that x_ - V¥, then the
e ‘

k t

k

fact that r > 0 implies that x(t) is uniformly continuous on
[o-r,b) and, x(t) »V¥(0) as t -b., Therefore, if we define x(b)
= ¥ (0), then (b,xb) must belong to the boundary of Q or x would
be continuable beyond b, Also, the fact that X, 1s continuous and
the distance of (b,xb) from any closed bounded set W is positive

imply the existence of a t, such that (t,xt) £W for t.st<D,

W
a conclusion stronger than asserted,

If no such subsequence exists, there are two cases to con-
sider: namely the cases where the set V = ((t,xt)} is bounded and
unbounded, If fhis set is unbounded, then for any closed bounded set
W in Q, there is & constant k, such that o] < k, for (t,0) € W.
Let #ﬁ = max {]xcl,kw}. From hypothesis, there is a sequence t, - b”
monotonically such that [xtkl > k&. From the property of the norm in
C and the fact that x,(6) = x(t+6), this implies the existence of a
t, such that (t,x.) # W for b, st <be

If the set V= ((t,x.), t € [0,b)) is bounded and has a
S-neighborhood in f}, then this set is also closed since there are

B

no subsequences tk —b” such that x converges, We wish to show



12

there is an oc:-> 0 such thet x is uniformly continuous on [b-g,b)
end, therefore, {(t,x,), t € [0,b)] belongs to a compact set in Q.
This will o‘pviously be a contra.diction..

From the hypotheses on v, D and Definitions 2,1 and (k,1),
there are a B, > 0 and continuous functions v(s), s 2 0, £(8),

0sp =B, 1(0) = €(0) = 0, end & constant N such that
D(o,%+¥) = D(0,¢) + D}(0,%)¥ + g(o,o,V)
-1
[a (O‘,(b,O)l s N, lD(",(O':Q)I = N,

|&(o,0,¥)| = e(p)|V¥]

o : ‘
I{s[deu(o,%G)]w(G)l s v(s) sup__ . l¥(e)|
Consequently,

(2-5} |D(a, o+y) - D(o,¥)] 2

I\II(O)I/N = T(S)l‘l’l - N suP_rseé-s""(s)ﬁ" - G(B)'WI

for (o,%), (o,™V) eV, [¥]| s B.

If x(t) 1s not uniformly continuous for t in [o-r,b),
There are an € > 0, a monotone decreasing sequence of positive
numbers %: Ak =0 as k-« and a sequence of real numbers 1t

with ¢, ¢, - Ak in [o,b) such that |x(tk) - x(tk-,i\tl z €
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for all k. For any s > 0, the fact that x is uniformly continuous

on [o-r,b-s] implies for any ¢g' > O the existence of a A >0

such that [x(t) - x(¢*)| se' for [tet']| <4, t,t' in [o-r,b-s],

Also, since D(ov,¢) is uniformly continuous on V, we can choose A

so that |[D(t,¢) - D(t',¢)] gﬂg' for  (t-t') <4, (t,0) eV, (t',0) eV,
Silﬁpose 0<psp, is giv.ény choose gt <min (B,e) and X

sufficiently large thet |A] <4, k2 K, For each k 2 K, let
s, = inf {t & [g,b) & [x(t) - x(‘b-—Ak)l z min (B,2)}.

This sequence of numbers is well defined since |x(tk) - x(tk-z_\k)l >€.

From (4.2),

ID(sk,xsk) - D(sk-%,xskuak)

z |D(sk,xsk) - D(sk,xsk_Ak)l
- |D(3k:xsk..AK) - D(Sk‘%’xsk-AKH
2 ]D(sk’xsk) - D(Sk’xsk-%)' - €'
z min (B,e)/N - v(s)p - ' - €(B) min '(s,c) difé,

Now one can obviously choose Bo,s,c' so that € > 0, Consequently,
the hypothesis that x(t) 1is not un%.fbrmly continuous on [o-r,b)

implies that D(t,xt) is not uniformly continucus on [o,b).



1k

On the other hand,

, ttt /
'D(t+1,xt+1) - D(t,x.) = [ £(s,x )ds

for all t, t+ 7 in [a,b).“ Since lf(s,xs)l s M for (s,xs) €W
and some conéﬁant M, the function D(f,xt) is uniforml§ continuous
on [U,b). Tﬁis contradiction completes the proof of thé theoremn,

To improve on Theorem 2,4 we suppose ﬁ(t,¢) "is continuous
in t,9, linear in o, ana in fact satisfies

o

(2.7) D(t,®) = A(t)e(0) + [ [d.v(t,6)1¢(8), det A(t) # O
X :

e :
I{s[dev(t.,e)we)l = T(t,8)supper g op19(6)]

for a continuous matrix A(t) and scaler function ¥(t,s), v(t,0) = 0,
t eR, sz0,

In the proof of Theorem 2,4, the assumption that a
S-neighborhéod of W belonged to 8 was used gnly.tofshow that
relation (2.6) was valid for some PB. When bB(t,¢) is linear in ¢
and satisfies (2.7), €(B) in (2.6) caen be taken identicaily zero,

The proéf above of Theorem 2.4 for this case yields

Theorem 2,5, Suppose Q is an open set in R X C, £f. 0 -»En is

continuous and maps closed bounded subsets of  into bounded sets

and DI R X C faEn satisfies (2,7). If (0,%) € and x is a
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noncontinuable solution of (1,1) on [o-r,b) through (o,¢), then

for any closed bounded set W in @ there is a e [g,b) such

| S
that (t,x,) £VW for t e [tw,b). .

3, Backward Continuation,

We say & function x e C([c—r~a,c],En), o >0, is a solution

of (L.1) on {o-r-g,0] through (o,¢) if x, = ¢ end for any

T € [0-0,0], x 1is & solution of (1.1) on [7-r,o] through (T,XT),

We sometimes refer to =x as a backward continuatio. of ¢ by (1.1).

Theorem 3,1, Suppose § 1is an open set in R X C and D in (1.1)
is atomic at -r on Q. If (a,¢) € 9, then there is ean o >0 and
a solution of (1,1) through (¢,®) on [o-r-a,0]. If, in addition

f(t,@) is locally Lipschitzian in ¢, then the solution is unique.

53225; The proof of this theorem follows the same lines as the proof
of Theorem l,1 except all extensions are made to the left of ¢ - r
rather than to the right of ¢, The assertion of uniqueness is proved
in a manner siﬁilar to the proof of Theorem 1.2,

| If D in (1,1) is atomic at zero emd -r on 8, then
Theorems 1,1 and 3,1 imply for any (0,%¢) € Q, there are o > 0,
p >0 and a continuous n-vector function x an [o-r-g,o+8] such
that x = 9, D(t,xt) is continuousiy differentiable and satisfies
(L.1) on (v-0,0+B). This is the same type of result that is known

for ordinary differential equations (r = 0).
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Let U be the values of (t,0,%) e R xR x C for which
x,(0,9) is defined and for each (t,0) € R X R, let U(t,0) =
(¢ € Cl (t,0,0) € U}. Also, define T(t,0)¢ = x,(0,?). If D is
atomic at 0 and -r, then T(t,&)!’Ukt,a) - T(t,0)U(t,0) is one-
to-one, With further conditions on D;f,'we can prove

b
Theorem 3,2, Suppose Q 1is an open set in- R X C, D in (1.1) is
atomic at © énd -r on @, and U, U(t,0) are defined as above,
If the functions D, A(t,#,0), A(t,¢,-r) of Definition 1,1 are
uniformly eontinuous on closed bounded subsets of Q and f(t,¢) is
locally Lipschitzian in ¢, then the mapping T(t,0): U(%,0) ~

- T(t,0)U(t,0) is a homeomorphism,

Proof; This is & consequence of Theorem 3,1, Theorem 1,4 and the ex-

tension of Theorem 1,4 to the backward continuation of functions ¢
by (1.1).
For RFDE, it is generally impossible to find a solution
through (g,¢) defined to the left of o, In fact, if such a solu-
tion exists on [o0-r-q,0], @ > 0, then x must be continuously |
differentiable on (a-abo) On the other hand, x(o+8) = ¢(9) for »
6 € (-0,0) and ¢ may only be continuous, Even if ¢ is contin-
uously differentiable, there may not be s solution through (o,¢) to
the left of o for a RFDE, If the differential equation is

s .t

(3.1) x(t) = £(t,x,)
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it is certainly necessary for ¢(0) = f(0,¢) if a solution of (3.1)
exists on [o-r-q,0], a > 0, through (o,9).

We prove

Theorem 3,5. If Q is an open set in R X C, f. D —->Rn is atomic
at -r on Q, (o0,¢) € @ and there is -an @, 0 <a<r such that
() 1is continuous for @ e [-,0], ¢(0) = £(c,?), then there are an

G >0 and a unique solution x of (3.1) on [o-r-a,6] through (o,%).

Proof, A function x is a solution of (3.1) on [o-r-q,0] through

(0,9) 4if and only if x =9, (’c,xt) €, t € [0-a,0] and

(3.2) £(t,x,) = x(t), t € [0-0,0].

For any o > 0, let (X [~r-q,0] _.;En,‘fﬁ(t)’ t[~r,0],
F(t) = o(-r), t € [~-r-a,-r]. Then x is a solution of (3.2)

if and only if x(o+t) = §(t) + z(t) and z satisfies
M [
. (3.3) f(d+t’¢t+zt) = ¢(t), t e [-0,0].

If £(t,0+¥) = £(£,0) + £3(t,0)¥ + g(t,9,V), then the
definition of the derivative implies that g(t,%,¥) is continuous in
(t,0,V¥), &(t,9,0) = 0 and e

v t

le(t,o,¥) - &(t,0,8)| <e(t,0,8)|v-¢], |v|, |e] =B
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where €(t,9,8) dis continuous in (t,¢,8) for (t,¢) eQ, B z O,
and €(t,9,0) = 0. If we make use of this in (3.3), then x is a
solution of (3.2) if and only if x(o+t) = s(t)'+ i(t) and z(t)

satisfies

(3.4) £y (o+t,8,)z, = -£(o+t,8,) - g(ovt, (o) + 9(t),  t e [-,0],

2
o

0.

If we let A(t,%,-r) = det B(t,4) be the function defined in Definition
1.1, then x(o+t) = o(t) + z(t) is a solution of (3.2) if and only if

z(t) satisfies

. o ~
(3.5) z(t) = B” (ﬁ+t,¢t)[ f [due(u+t, t,e)]zt(e)'_—f(a+t,®t)
'g(d+t’$t’zt) +h$(t)), t € [~a,0],
zo=00

For any ﬁ >.0, let B = {¥ eCl|¥] sp}. ‘For any' v, 0<v<1l/h

there are a >0, B > O such that (o+t, ¢+w) € 9

ﬂ(
" R

IB’l(a+t,¢+¢)|e(o*t,¢+w,ﬁ) <v

P B
BT (o+t, 049) | v(o+t, 049, -7) < vV

* -
3.t

for (t, w) e I xBy, where 1(t,,0,-r) is defined in Definition L.1.
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Choose ¢, so that these relations are satisfied, For

any nonnegative real @,B, let &(a,B) be the set defined by
A(@,B) = (¢ e C([-r-&,0],E™)? 8, =0, & ¢© Bé, t € [-&,0]).

For eny O <'B <P, there is an @, O << Q, so that |$t_¢l <B - B.
A - - P -
Thus [g40,-¢] 'SP+ p-B=p and (ort,048,) e for t e [-30],

t e (a,B). Further restrict & so that
=1 ~ ~ -
|B™ (o+t,0,)| +| £(o+t,9,) - £(0,0)] = B
-l Lad e ° -
15 (0v5,5,)[ | $(0) - $(6)] = B

for t € [-a,0].
For any ¢ € Z(Q,B), define the transformation T: o/(2,B) -

¢([-r-&,0], E") by the relation

it

0

(3.6)  (Te)(t) =0, t e [-r,0]

-l A o ~
B (cr+t,¢t)[-f [dep,(o+t,¢
B

(Te) (%) 0)1z, (0) - £(o+t,9

-t, t)

+ £(0,9) - g(d+t,$t,it) + b(t) - 5(0)}, t € [-0,0].

By hypothesis ¢(0) = f(0,¢) and therefore the fixed points of T in

o/(3,B) coincide with the solutions’ X of (3.3) on [0-r-4,0] with

x(o+t) = 6(t) + z(t) where z, € (0,B), t e [-3,0].
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We now show that T is a contraction on /(a,B). It is
clear from (3.6) and the above restriction on @,F that

[ (Te)(8)| s vB+ B+ vB+ B =UBsh

[ @ () - () ()] 8 vIgp-gel + vIE-g, s 5lt,-t,]

for all +t'e [-3,0], ¢, & € o(0,B). Therefore, T: of(a,B) » (a,B)
and T is a contraction. Thus, there is & unique fixed point in
HA(o,B) and this proves the theorem,

Theorem 3.3 is a generalization of a result of Hastings [8].

gorollary 3,1, Suppose Q is an open set in R X C, fi. D —E is

AT

**"continuous, stomic at -r, and the solution x(o,) :of (3.1) through

any (o,%) € Q@ is unique, If T(t,0)! C —>C, t z 0, is defined by

T(t,0)¢ = xt‘-(o,fb), then T(t,0) is one-to-one,

Proof: If the assertion is not true, then there are Y # ¢ in C

and a %, > ¢ such that xtl(o',«b) = xtl(a,w, xt(o,o) # xt(c,w),

0Ost<t If x(t) = x(0,¢)(t),y(t) = x(0,¥)(t), then x(t) =

l.
f(t,xt), ¥y(t) = f(t,yt) for all t > 0 in the domain of definition

-

of x, Since f 18 assumed to be atomic at -r, Theorem 3,3 implies

there are an o = a(tl) > 0 and s unique solution of (3.1) on

[t,-r-q,t,-r] through (tl’xtl)’ (tl’yﬁl-)" Since (tl,xtl) = (tl’yﬁl}

-astéto

by hypotheses, it follows that (tJXt) = (t,yt) for t 1

1
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This is a contradiction and proves the corollary.

b, Rate of Appioach to Zero of Solutions of Linear Equations.

In this section, we prove

Theorem h,l;!§Suppose Q= (7,0) XC, ﬁ(t,@)z f(t,p) in (1.1) are
linear in ¢, there is a positive constan® k such that |D(t,p)| s
k||, |£(t,9] = k|p|, (t,0) e @ and D is uniformly atomic at O
and -r on {, For any (0,p) € Q, there is a unique solution
x(0,p) of (l,1) through (o,p) which exists on (7,o) and, if a
so;ution x(t) @pproaches zero faster than any exbonential as t - w,

then x(t) =0 for all t e (T,®).

Proof, The existence and uniqueness of the solution x(o,p) on

(t,») follows from the results in Sections 2 and 3, Furthermore,
foliowing the same arguments as in Lemma IT.1l in [5], one can show

there are positive constants a, b > 0 such that for any o e (1,®),
b|t-o
|x.| = ae | I]xol, t € (7,%),

Suppose there is a t e (T,®) such that (xtl > 0. Since
x(c) approaches zero faster than any exponential as ¢ -, for any
a > 0, there is a constant X(o,t) such’ that |x0| s K(o,t)e ™,

o € [t,o), Therefore, for o z t,
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0<|x] = ae'btK(a,t)e'(a'b)o.

If o . is chosen such that a> b then for o sufficienﬁly large this,
gives a contra,dlction and proves the- theorem. ‘

The above theorem genera.lizgs a result of Wi'ight [9] for
differentialidifference equations, .

For autonomous linear RFDE, one can prove that no nonzero
solution can approach zero faster than any exponential as t —
provided that f 1is atomic at -r, The basic idea of the proof pro- .
ceeds in the same menner but requires an estimate of the sslution at
?zine t 3in terms of the solution and the derivatives of the solution
at time ¢ > t. For this case, D. Henry c[lo] using properties of
entire functions has proved a much stronger result; .namely; any solu-
tion approaching zero faster than any exponéntial'as 't -)‘S must be
identically zero after a fixed time (depending only on the equation and
not the solution) even when f is not atomic at -r,

' For nonautonomous linea.r periodic VRFDE,’ : e:éplinples are linown
(see [11]) for which noﬁzero solutions éan ap‘proachi'z‘e:ro ‘faster than
ény eiponential as t - =, However, these examples have an f which

is not atomic at -~r,
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